Flow Around a Parabola

Consider a parabola whose apex is the origin of coordinates O, and and whose axis of symmetry is the x axis. The equation for such a parabola is given by

$$
\begin{equation*}
y^{2}-2 R x=0, \tag{1}
\end{equation*}
$$

where R is the radius of curvature at the apex. The plane of the parabola will be referred to as the z-plane, where $z=x+i y$. We transform the parabola into the ξ axis of the ζ-plane, where $\zeta=\xi+i \eta$, using the conformal mapping

$$
\begin{equation*}
z=\frac{\zeta^{2}}{2 R}+i \zeta \tag{2}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\zeta=-i R+\sqrt{2 R z-R^{2}} . \tag{3}
\end{equation*}
$$

The branch cut in (3) is defined along the parabola. From (2) we have

$$
\begin{equation*}
\frac{d z}{d \zeta}=\frac{\zeta+i R}{R}=\sqrt{\frac{2 z}{R}-1} \tag{4}
\end{equation*}
$$

We now consider the following two cases:

1. Uniform Flow U_{∞} at $x \rightarrow-\infty$

In the ζ-plane, we take the stagnation flow

$$
\begin{equation*}
(u-i v)_{\zeta}=\frac{V \zeta}{R} \tag{5}
\end{equation*}
$$

where V is a constant to be determined. The velocity in the physical plane is

$$
\begin{equation*}
(u-i v)_{z}=\frac{V \zeta}{\zeta+i R}=V\left(1-\frac{i}{\sqrt{\frac{2 z}{R}-1}}\right) . \tag{6}
\end{equation*}
$$

As $x \rightarrow-\infty, u \rightarrow V=U_{\infty}$. Along the negative x axis,

$$
\begin{equation*}
u=U_{\infty}\left(1-\frac{1}{\sqrt{1-\frac{2 x}{R}}}\right), \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d u}{d x}=-\frac{U_{\infty}}{R} \frac{1}{\left(1-\frac{2 x}{R}\right)^{\frac{3}{2}}} . \tag{8}
\end{equation*}
$$

2. Flow Turning Around a Parabola

In the ζ-plane, we take

$$
\begin{equation*}
(u-i v)_{\zeta}=V, \tag{9}
\end{equation*}
$$

where V is a constant to be determined. The velocity in the physical plane is

$$
\begin{equation*}
(u-i v)_{z}=\frac{V R}{\zeta+i R}=\frac{V}{\sqrt{\frac{2 z}{R}-1}} \tag{10}
\end{equation*}
$$

At the apex, the stagnation point, $u_{0}=0$, and $V=v_{0}$. Therefore,

$$
\begin{equation*}
(u-i v)_{z}=\frac{v_{0}}{\sqrt{\frac{2 z}{R}-1}} . \tag{11}
\end{equation*}
$$

